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Light scattering by randomly oriented bispheres
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We describe how the T-matrix approach can be used to compute analytically the Stokes scattering matrix for
randomly oriented bispheres with touching or separated components. Computations for randomly oriented
bispheres with touching components are compared with those for volume-equivalent randomly oriented prolate
spheroids with an aspect ratio of 2 and for a single volume-equivalent sphere. We show that coopera-
tive (multiple-scattering) effects can make bispheres more efficient depolarizers than spheroids in the back-

scattering direction.

Computations of light scattering by closely packed
multiple-sphere configurations are important in a
number of fields, e.g., atmospheric optics and the
theory of weak localization of photons. In most
cases of practical interest, scattering particles are
distributed over orientations rather than perfectly
aligned. However, since computations for randomly
oriented clusters have been difficult and computa-
tionally intensive, practically all numerical data pub-
lished so far pertain to clusters in a fixed orientation.
Therefore it is the aim of this Letter to describe how
the T-matrix approach can be efficiently used in
computations of the Stokes scattering matrix for ran-
domly oriented bispheres (two-sphere clusters) with
touching or separated components.

In the framework of the T-matrix method® the elec-
tric fields incident on (subscript i) and scattered by
(subscript s) a particle are expanded in a series of
vector spherical harmonics as follows:

Ei(r) = > [ anRgMpu(kr) + by RN, ()|, (1)
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E,(r) = Y[ pruMun(®r) + ¢uuNokr) |, (@)
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where £ = 27/A and A is a free-space wavelength.
The harmonics RgM,,, and RgN,,, have a Bessel-
function radial dependence and are regular at the
origin, whereas the functions M,,, and N,, have
a Hankel-function radial dependence and vanish at
infinity. The expansion coefficients of the incident
plane wave, a,,, and b,,,, are given by simple analyt-
ical expressions, whereas the expansion coefficients
of the scattered field, p,. and ¢.., are initially un-
known. Because of the linearity of Maxwell’s equa-
tions the relation between the expansion coefficients
of the incident and scattered fields is linear and is
given by a transition matrix T':

p = Ta, 3)

where we use compact matrix notation and denote the
column of the expansion coefficients of the incident
field by a and that of the scattered field by p. If the
T matrix for a given scatterer is known, Egs. (2) and
(3) can be used to compute the scattered field.

It was shown recently that the T-matrix approach
can be used analytically to compute the Stokes scat-
tering matrix for randomly oriented rotationally
symmetric particles.? The major advantage of the
analytical formulation is that first the elements of the
scattering matrix are expanded in so-called general-
ized spherical functions,® and then the corresponding
expansion coefficients are directly expressed in the
elements of the T" matrix computed in the natural
reference frame with the z axis along the axis of
particle symmetry. As a result, computation of the
complicated angular structure of light scattered by
a nonspherical particle in a fixed orientation with
further numerical integration over particle orienta-
tions is avoided, thus making the analytical method
accurate and computationally fast.

So far the T-matrix method has been used mainly
in computations for simple isolated nonspherical scat-
terers. However, the T-matrix concept is quite gen-
eral and can be applied to any composite scatterers,
particularly bispheres. Since bispheres are bodies of
revolution, the analytical method can be directly em-
ployed for efficient computations of the orientation-
ally averaged Stokes scattering matrix, provided that
the T matrix for a bisphere is computed in the nat-
ural reference frame with the z axis connecting the
sphere centers.

To compute the T matrix, we use the method de-
scribed in detail in Refs. 4 and 5 (see also Ref. 6).
In brief, the scattered field from a two-sphere cluster
can be given as the superposition of individual fields
scattered from each sphere: E; = E;! + E,? (note,
however, that these individual fields are interdepen-
dent because of electromagnetic interaction between
the spheres). The external electric field illuminating
the cluster and the individual fields scattered by the
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Fig. 1. Elements of the Stokes scattering matrix for randomly oriented bispheres with touching components (thick solid
curves), randomly oriented prolate spheroids with aspect ratio 2 (thin solid curves), and a single sphere (dotted curves).

spheres can be expanded in vector spherical harmon-
ics with origins at the sphere centers:

Eij(rj) = Z[amanngn(krj) + bmangNm'l(krj)] ’

Jj=12, (4

E/(t’) = Y[ p'Mupn(kr?) + ¢ Npa (k)]
ji=12,

where the index j numbers the spheres and vector
r’/ originates at the center of the jth sphere. To ex-
ploit the orthogonality of the harmonics in the sphere
boundary conditions, we need to employ addition the-
orems in which a harmonic about one sphere ori-
gin can be reexpanded in harmonics about a second
origin. This process ultimately leads to a system of
linear equations for the scattered-field expansion co-
efficients p’ for each sphere j:
p’ + A/HVp/ =Alal, i =12j+].
(6)

Here diagonal matrices A’ represent the standard
Lorenz—Mie scattering coefficients for each sphere
and are functions solely of sphere size parame-
ters and refractive indices. On the other hand,
matrices H”' account for the electromagnetic cou-
pling between the spheres and depend on only the
distance and direction of travel between the spheres.
We considerably reduce the complexity of the equa-
tions by exploiting the axial symmetry of the two-
sphere cluster that results in a decoupling of different
m modes. Inversion of Eq. (6) gives sphere-centered
transition matrices T/’ that transform the expansion

coefficients of the incident field into the expansion
coefficients of the individual scattered fields:

2
p’ = Z Tii' g/ . (7
j=1

Realize that the matrices T//', as defined above, are
based on the two origins of the spheres. In the far-
field region the scattered-field expansions from the
individual spheres can be transformed into a sin-
gle expansion based on a single origin of the cluster.
Employing again the addition theorem for vector har-
monics, we find that the expansion coefficients based
on the single cluster origin are

2 2
p Jip/ = Z Z JiT 9/
Jj=1j'=1

It
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in which the matrices J7 are similar in form to the
H matrices in Eq. (6). The matrix T defined in the
last term of Eq. (8) is the T' matrix that we seek
[see Eq. (3)] and can be used directly in comput-
ing the orientationally averaged scattering matrix for
the cluster.

Calculation results presented here correspond to
two identical touching spheres in random orienta-
tion. The refractive index and size parameter of
each sphere are 1.5+0.02; and 15.874, respectively.
The equal-volume-sphere size parameter for the two-
sphere cluster is thus equal to 20. Computation of
the T matrix for the two-sphere cluster required
11.6 s of CPU time on an IBM RISC Model 37T work-
station, followed by 32.6 s to compute the expansion
coefficients appearing in the generalized spherical
function expansions of the scattering matrix elements
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and 0.3 s to compute the scattering matrix for 361
scattering angles. Thus the time for computing the
orientationally averaged light scattering characteris-
tics is comparable with that for computing the nat-
ural T matrix for the bisphere. This demonstrates
once again the efficiency of the analytical averaging
method. And, to the best of our knowledge, these are
the first rigorous computations of the full scattering
matrix for randomly oriented bispheres.

Results of the calculations appear in Fig. 1, in
which the (normalized) elements of the Stokes scat-
tering matrix, as defined by Eq. (2.9) of Ref. 7, are
presented versus scattering angle. For comparison,
Fig. 1 also presents results for randomly oriented
volume-equivalent prolate spheroids with an aspect
ratio of 2 and for a single volume-equivalent sphere.
The bisphere—spheroid differences seen in Fig. 1 re-
sult mainly from the fact that the elements of the
scattering matrix for the bisphere are strongly oscil-
lating functions of the scattering angle, whereas for
the spheroid the curves are much smoother. Thus,
even when randomly oriented, bispheres preserve
most of the interference structure characteristic of
single monodisperse spherical particles,” whereas
for spheroids this interference structure is more no-
ticeably suppressed by particle nonsphericity and
orientational averaging. Therefore averaging over
sizes for bispheres is even more necessary than for
spheroids to make the elements of the scattering
matrix smooth enough that conclusions about the
effects of particle shape on light scattering become
meaningful (see Ref. 8).

The most interesting behavior is exhibited by the
(2,2) and (4,4) elements of the scattering matrix. For
single spheres, Fy,/F;; = 1, whereas for randomly ori-
ented nonspherical particles this ratio may, in gen-
eral, deviate from unity. Figure 1 shows that, for
bispheres, the ratio Fy/F;; is in most cases closer
to unity than for spheroids. However, at exactly the
backscattering direction the deviation from unity is
much bigger for bispheres, making the backscatter-
ing linear depolarization ratio (Fy, — Fy,)/(Fy; + Fy)
calculated at the 180° scattering angle equal to 0.481,
as opposed to 0.175 for spheroids. Similarly, the
backscattering circular depolarization ratio (Fy; +
Fy)/(F11 — F4) for bispheres (1.851) is much larger
than that for spheroids (0.425). For single spheres,
both ratios are equal to zero (no depolarization). It
is well known that two factors, namely, particle non-
sphericity and multiple scattering, can cause signif-
icant depolarization. Thus apparently it is multiple
(cooperative) scattering of light between two spheres
that makes bispheres more efficient depolarizers than
volume-equivalent spheroids.

Finally, we note that different parts of our code and
the whole code have been extensively tested against
numerical data,® and in all cases the quantitative
agreement was excellent. Also, we have found that
our computations for randomly oriented bispheres
are in full agreement with the general equalities!'-!?
F15(0) = Fi5(1) = F34(0) = F34(7) = 0, F25(0) = F33(0),
Foo(m) = —Fs3(m), Fyy(mr) — Fos(m) = Fyy(m) — Fys(m),
and Fy;(0) — Fy(0) — F33(0) + Fuy(0) = 0 as well as
with general inequalities derived by van der Mee
and Hovenier.!*

In summary, we have demonstrated that the T-
matrix approach in combination with the analyti-
cal averaging procedure can be efficiently used to
compute light scattering by randomly oriented bi-
spheres. The generalization of this method to linear
chains consisting of an arbitrary number of spheres
is rather straightforward and is the subject of our
current research.
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